Search results for "Electron diffraction tomography"

showing 7 items of 7 documents

A new hydrous Al-bearing pyroxene as a water carrier in subduction zones

2011

Abstract A new Hydrous Al-bearing PYroxene (HAPY) phase has been synthesized at 5.4 GPa, 720 °C in the MgO–Al2O3–SiO2–H2O model system. It has the composition Mg2.1Al0.9(OH)2Al0.9Si1.1O6, a C-centered monoclinic cell with a = 9.8827(2), b = 11.6254(2) c = 5.0828(1) A and β = 111.07(1)°. The calculated density is 3.175 g/cm3 and the water content is 6.9% H2O by weight. Its structure has been solved in space group C2/c by the recently developed automated electron diffraction tomography method and refined by synchrotron X-ray powder diffraction. HAPY is a single chain inosilicate very similar to pyroxenes but with three instead of two cations in the octahedral layer, bonded to four oxygens and…

PyroxenePrecession electron diffractionSubductionSilicatechemistry.chemical_compoundCrystallographyHydrous pyroxeneGeophysicschemistryElectron diffractionOctahedronSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Precession electron diffractionElectron diffraction tomography; Hydrous pyroxene; Precession electron diffraction; SubductionElectron diffraction tomographyChloriteGeologyPowder diffractionMonoclinic crystal systemEarth and Planetary Science Letters
researchProduct

Atomic structure solution of the complex quasicrystal approximant Al77Rh15Ru8 from electron diffraction data

2014

The crystal structure of the novel Al77Rh15Ru8phase (which is an approximant of decagonal quasicrystals) was determined using modern direct methods (MDM) applied to automated electron diffraction tomography (ADT) data. The Al77Rh15Ru8E-phase is orthorhombic [Pbma,a= 23.40 (5),b= 16.20 (4) andc= 20.00 (5) Å] and has one of the most complicated intermetallic structures solved solely by electron diffraction methods. Its structural model consists of 78 unique atomic positions in the unit cell (19 Rh/Ru and 59 Al). Precession electron diffraction (PED) patterns and high-resolution electron microscopy (HRTEM) images were used for the validation of the proposed atomic model. The structure of the E…

ChemistryMetals and AlloysQuasicrystalCrystal structureelectron diffraction tomography; icosahedral and decagonal quasicrystals; modern direct methodsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCrystallographyElectron diffractionmodern direct methodsMaterials ChemistryAtomic modelicosahedral and decagonal quasicrystalsPrecession electron diffractionOrthorhombic crystal systemelectron diffraction tomographyHigh-resolution transmission electron microscopyElectron backscatter diffraction
researchProduct

Structure analysis of titanate nanorods by automated electron diffraction tomography

2011

A hitherto unknown phase of sodium titanate, NaTi3O6(OH)·2H2O, was identified as the intermediate species in the synthesis of TiO2 nanorods. This new phase, prepared as nanorods, was investigated by electron diffraction, X-ray powder diffraction, thermogravimetric analysis and high-resolution transmission electron microscopy. The structure was determined ab initio using electron diffraction data collected by the recently developed automated diffraction tomography technique. NaTi3O6(OH)·2H2O crystallizes in the monoclinic space group C2/m. Corrugated layers of corner- and edge-sharing distorted TiO6 octahedra are intercalated with Na+ and water of crystallization. The nanorods are typically …

Diffractionthermogravimetric analysisReflection high-energy electron diffractionChemistryGeneral Medicinetitanate nanorodsGeneral Biochemistry Genetics and Molecular BiologyCrystallographyElectron diffractionX-ray powder diffractionEnergy filtered transmission electron microscopyautomated electron diffraction tomographyhigh-resolution transmission electron microscopySelected area diffractionHigh-resolution transmission electron microscopyPowder diffractionElectron backscatter diffractionautomated electron diffraction tomography; high-resolution transmission electron microscopy; thermogravimetric analysis; titanate nanorods; X-ray powder diffraction
researchProduct

MZ-35, a new layered pentasil borosilicate synthesized in the presence of large alkali cations

2013

Abstract A new layered borosilicate has been synthesized in the presence of cesium and sodium cations and its structure has been solved by a combination of automated diffraction tomography (ADT) and X-ray powder diffraction (XRPD). MZ-35 has a composition NaCs 2 [BSi 7 O 16 (OH) 2 ](OH) 2 ·4H 2 O and features space group P-4m2. The unusually small unit cell ( a 7.3081 A, c 10.7520 A) is shared by two random-stacked configurations of the structure: a network of connected pentasil units related to the layer of RUB-18 and a bidimensional checkerboard of intersecting ladders of 4-membered rings. The two configurations are related by the simple face-sharing inversion of a hydroxyl-bearing tetrah…

Automated electron diffraction tomography; Rietveld structure refinement; Layered borosilicate; 4-MR ladders; Face-sharing terahedraMaterials science4-MR laddersSodiumchemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesDiffraction tomographyFace-sharing terahedraGroup (periodic table)General Materials ScienceRietveld structure refinementLayered borosilicateBorosilicate glassAutomated electron diffraction tomographyGeneral Chemistry4-MR ladders; Automated electron diffraction tomography; Face-sharing terahedra; Layered borosilicate; Rietveld structure refinement[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAlkali metal4-MR ladders; Automated electron diffraction tomography; Face-sharing terahedra; Layered borosilicate; Rietveld structure refinement;0104 chemical sciencesCrystallographychemistryMechanics of MaterialsCaesiumTetrahedron0210 nano-technologyPowder diffraction
researchProduct

The structure of charoite, (K,Sr,Ba,Mn)(15-16)(Ca,Na)(32)[(Si-70(O,OH)(180))](OH,F)(4.0)center dot nH(2)O, solved by conventional and automated elect…

2010

AbstractCharoite, ideally (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0·nH2O, a rare mineral from the Murun massif in Yakutiya, Russia, was studied using high-resolution transmission electron microscopy, selected-area electron diffraction, X-ray spectroscopy, precession electron diffraction and the newly developed technique of automated electron-diffraction tomography. The structure of charoite (a= 31.96(6) Å,b= 19.64(4) Å,c= 7.09(1) Å, β = 90.0(1)°,V= 4450(24) Å3, space groupP21/m) was solvedab initioby direct methods from 2878 unique observed reflections and refined toR1/wR2= 0.17/0.21. The structure can be visualized as being composed of three different dreier silicate chains: a d…

Charoite010504 meteorology & atmospheric sciencesChemistryAb initioPrecession electron diffraction (PED)engineering.material010502 geochemistry & geophysics01 natural sciencesCrystal structure analysisCrystalAutomated electron diffraction tomography (ADT)CrystallographyElectron diffractionOctahedronGeochemistry and PetrologyCharoiteengineeringAutomated electron diffraction tomography (ADT); Charoite; Crystal structure analysis; Precession electron diffraction (PED)Precession electron diffractionMoleculeSpectroscopy0105 earth and related environmental sciences
researchProduct

Automated electron diffraction tomography – development and applications

2019

Electron diffraction tomography, a potential method for structure analysis of nanocrystals, and, in more detail, the strategies to use automated diffraction tomography (ADT) technique are described. Examples of ADT application are discussed according to the material class.

Structure analysisAb initio02 engineering and technologyCrystal structure010402 general chemistry01 natural scienceslaw.inventiondisorder analysissingle-crystal structure analysislawMaterials ChemistrynanomaterialsLead Articlesbusiness.industryChemistryElectron crystallographyMetals and Alloys021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic Materialselectron crystallographyElectron diffractionOptoelectronicselectron diffraction tomographyTomographyElectron microscope0210 nano-technologybusinessCrystal twinningActa Crystallographica Section B Structural Science, Crystal Engineering and Materials
researchProduct

Essential features of the polytypic charoite-96 structure compared to charoite-90

2011

AbstractCharoite, ideally (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4·nH20, is a rock-forming mineral from the Murun massif in Yakutia, Sakha Republic, Siberia, Russia, where it occurs in a unique alkaline intrusion. Charoite occurs as four different polytypes, which are commonly intergrown in nanocrystallme fibres. We report the structure of charoite-96(a =32.11(6),b =19.77(4),c =7.23(1) Å, β = 95.85(9)°,V =4565(24) Å3, space groupP21/m),which was solvedab initioby direct methods on the basis of 2676 unique electron diffraction reflections collected by automated diffraction tomography and refined toR1/wR2=0.34/0.37. The structure of charoite-96 is related to that of the charoite-90,…

010504 meteorology & atmospheric sciencesElectron crystallographyAb initiocrystal structure analysisengineering.material010502 geochemistry & geophysicscharoite polytypes01 natural sciencesSilicateNanocrystalline materialchemistry.chemical_compoundCrystallographyelectron crystallographychemistryOctahedronElectron diffractionGeochemistry and PetrologyGroup (periodic table)Charoitecharoite polytypes; crystal structure analysis; electron crystallography; electron diffraction; electron diffraction tomographyengineeringelectron diffractionelectron diffraction tomography0105 earth and related environmental sciences
researchProduct